The Carotenoids of Gagea lutea (L.) Ker-Gawl.

ARNULV STABURSVIK *

Department of Chemistry, Agricultural College of Norway, Vollebekk, Norway

Very little is known about the carotenoids of the plant family Liliaceae. Apart from an investigation of Narthecium ossifragum (L.) Huds.¹ it seems that only scattered and isolated finds have been reported. Lycopene has thus been shown to be present in Convallaria majalis L.,² rhodoxanthin in Haworthia coarctata var. kraussi Resende,³ and in Aloe vera L. and Bulbine annua (L.) Willd.⁴

In Narthecium 15 of the 22 carotenoids recorded were epoxidic in nature, according to the ether-hydrochloric acid test for 5,6-or 5,8-epoxides. Epoxidic carotenoids (antheraxanthin and violaxanthin) have also been reported from several Lilium species. ^{5,6} Other Liliaceae, viz. Tofieldia pusilla (Michx.) Pers. and Phormium tenax Forst., are rich in epoxidic carotenoids. (Unpublished results).

Gagea lutea (L.) Ker-Gawl. is another liliaceous plant in which epoxidic carotenoids are dominating, qualitatively as well as quantitatively. With the exception of fraction 10 (lutein), fraction 12 (probably cryptoxanthin), and fractions 13-15 (β -carotene, α -carotene, and phytofluene, respectively), all fractions listed in Table 1 gave a more or less pronounced blue colour when dissolved in ether and treated with hydrochloric acid.

The fractions 1 and 2 contained substances corresponding in their properties to neoxanthin and auroxanthin, respectively. The fractions 3 and 4 were relatively stable towards dilute acids, excluding the presence of 5,6-epoxides; the substances presumably were flavoxanthin and chrysanthemaxanthin, respectively. Fraction 5 displayed the spectrum of violaxanthin; on acid treatment it gave a substance corresponding to fraction 2. The zones 6-8 contained carotenoids displaying spectra of the auroxanthin (6-7) and flavoxanthin (8)types, however, these zones were much less strongly adsorbed to the columns than the auroxanthin and flavoxanthin in zones 2 and 3. Fraction 9 seemed to be lutein epoxide.

Experimental. Fresh plant material (inflorescences) of Gagea lutea (L.) Ker-Gawl., collected at Ås, Norway, was extracted with

Table 1. Carotenoids of Gagea lutea (L.) Ker-Gawl. Zones numbered in order of decreasing adsorptivity.

Zone No.	Adsorption maxima, m μ . Solvent benzene			Tentative identification
	478	447	420	Neoxanthin
2	435	408	385	Auroxanthin
3	458	430	407	Flavoxanthin
4	460	431	408	Chrysanthemaxanthin
5	484	453	425	Violaxanthin
6	435	409	388	
7	436	409	388	
8	459	433	410	
9	482	453	425	Lutein epoxide
10	487	457	432	Lutein
11	485	456	432	
	Solve	ent petroleum et	ther	
12	475	445	425	Cryptoxanthin (?)
13	477	448		β -Carotene
14	475	447		α-Carotene
15	368	348	330	Phytofluene

^{*} Present address: Makerere University College, Kampala, Uganda.

cold acetone. The extracts were concentrated and the lipids transferred to peroxide free ether. After saponification with 10 % ethanolic potassium hydroxide, the carotenoids were partitioned between petroleum ether and 90 % methanol. After evaporation to dryness much colourless material was removed by dissolving in acetone and cooling to $-60^{\circ}\mathrm{C}$, when sterols and fatty alcohols precipitated and were filtered off. All operations were carried out in a nitrogen atmosphere.

The hypophasic carotenoids were chromatographed on columns of precipitated calcium carbonate (Riedel-de Haën) and developed with benzene. The epiphasic carotenoids were chromatographed on calcium hydroxide and developed with petroleum ether (b.r. 60 – 80°C). The individual zones were cut out and their absorption spectra measured on a Beckman DB recording spectrophotometer. The spectra were measured again, after the fractions had been rechromatographed on kieselgur-containing paper (xanthophylls) 7 or aluminium oxidecontaining paper (carotenes).8

A grant from Norges Almenvitenskapelige Forskningsråd is gratefully acknowledged. The author is indebted to Miss Eva Skilnand for skilful technical assistance.

- Stabursvik, A. A Phytochemical Study of Nathecium ossifragum (L.) Huds., Norges Tekniske Vitenskapsakad. Ser. 2, No. 6, (1959) pp. 33-46.
- Winterstein, A. and Ehrenberg, H. Z. physiol. Chem. 207 (1932) 25.
- 3. Romariz, C. Portugaliae Acta Biol. 1 (1946) 235.
- Lippmaa, T. Ber. Deut. Bot. Ges. 44 (1926) 643.
- Karrer, P. and Oswald, A. Helv. Chim. Acta 18 (1935) 1303.
- Tappi, G. and Menziani, E. Atti Soc. Nat. e Mat. Modena 85 (1954) 28.
- Jensen, A. and Liaaen Jensen, S. Acta Chem. Scand. 13 (1959) 1863.
- 8. Jensen, A. Acta Chem. Scand. 14 (1960) 2051.

Received June 27, 1969.